
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, Nov. 2022 3603
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.11.008 ISSN : 1976-7277

A Sufferage offloading tasks method for
multiple edge servers

Tao Zhang1, Mingfeng Cao1* and Yongsheng Hao2
1Changde City Tobacco Company, Changde, 415000, China

2 Network Center, Nanjing University of Information Science & Technology, Nanjing, 210044, China
[E-mail : 82412379@qq.com, a13762606762@163.com, yshao@nuist.edu.cn]

*Corresponding author: Mingfeng Cao

Received December 5, 2021; revised June 30, 2022; accepted Septebmer 21, 2022;
published November 30, 2022

Abstract

The offloading method is important when there are multiple mobile nodes and multiple edge
servers. In the environment, those mobile nodes connect with edge servers with different
bandwidths, thus taking different time and energy for offloading tasks. Considering the system
load of edge servers and the attributes (the number of instructions, the size of files, deadlines,
and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile
edge environment (MCE). Most of the past work mainly offloads tasks by judging where the
job consumes less energy. But sometimes, one task needs more energy because the preferred
edge servers have been overloaded. Those methods always do not pay attention to the influence
of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when
the job costs a lower energy consumption executed on the MD. We suppose that every task is
submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth
efficiency is defined by the sending ratio, the receiving ratio, and their related power
consumption. We sort the task in the descending order of the ratio between the energy
consumption executed on the mobile server node and on the MD. Then, we give a “suffrage”
definition for the energy consumption executed on different mobile servers for offloading tasks.
The task selects the mobile server with the largest suffrage. Simulations show that our method
reduces the execution time and the related energy consumption, while keeping a lower value
in the number of uncompleted tasks.

Keywords: multiple edge servers, sufferage, offload method, tradeoff

3604 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

1. Introduction

Mobile devices bring great convenience to people’s life [1]–[3] But the limitation in
processing ability and energy supply hinders its usage [4]. Offloading some tasks to remote
mobile servers is a solution to overcome those shortcomings [5]–[9]. The Offloading method
brings two benefits for the mobile device (MD): improving the processing ability and reducing
energy consumption. It makes that the MD overcomes overloaded when it has a higher system
load. With the help of the remote servers, the MD also can reduce the energy consumption in
some cases.

Several prototype systems have been used to offload tasks for MDs [1]–[3], [10]–[12] with
different targets and different environments. The target of offloading tasks from local to a
server includes: reducing the energy consumption of the MD, shortening the execution time,
and meeting other QoSs (Quality of Services) [13]–[15]. If the execution location is select
smartly, energy consumption can be reduced while keeping other requirements [16], [17]. How
select the execution location is the key problem for offloading tasks for MDs. The network
also influences the energy consumption for offloading tasks, because the different network has
different bandwidth and energy consumption, which influences the execution time for
transferring files and the related energy consumption. The dynamic network makes whether
offloading has a different effect on the MD of the energy consumption, execution time, and so
on. Prior work has been widely evaluated in various networks, such as 2G/3G/4G/5G network
[7], [8], [18]–[20].

Previous offloading methods always begin with judging the location where the task has
lower energy consumption [2], [21]. Then, according to the deadline of tasks, the bandwidth
between the MD and the offloaded target location, the system load of the MD and remote
server, the scheduling method selects the execution location [8], [17], [22]. They always judge
the preferring location of a task and offload tasks according to the preferring locations.
Different routes have various energy efficiencies (sending power consumption/sending rate,
or receiving power consumption/receiving rate). This is the first aspect that we try to pay
attention to in this paper. If we can offload to many mobile servers make the offloading
problem more difficult. Moreover, the past methods always neglect the fact that the task
influences each other. For example, if a task executed on the MD consumes lower energy than
in the mobile cloud (2 energy on the MD and 3 energy on the offloaded location), but the next
task (1 energy on the MD and 10 energy on the offloaded location) may not be executed on
the MD because of the system load. The condition happens more usually in the many (mobile
nodes)-to-many (mobile servers) environment. In this paper, we try to offload tasks in a many-
to-many environment by considering the scheduling influence of tasks on each other.

We organize the paper as follows. Section 2 reviews the offloading methods in mobile
environment. In Section 3, we give the system architecture and related models used in our
paper. Section 4 gives a deep analysis of our system, and then gives the offloading method.
Section 5 compares our proposed method with other methods. Section 6 gives the conclusion
and the future work.

 2. Related work
Offloading methods help MDs to enhance processing ability and lengthen the working time.
Researchers have much work on offloading methods under various environments.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3605

Most offload methods are heuristics algorithms [5], [6], [10], [18], [20], [23]–[28]. B. Li et
al. [20] study offload method when the application belongs to computation-intensive
applications. MinHop, MET and METComm heuristics were used to offload tasks when the
task dynamically arrives independent. L.Yang et al. [24] formulated the offloading problem
into an energy-consuming (EC) minimization problem while meeting other constraints. They
used ASO and Pro-ITGO to offload tasks. The ASO algorithm is a lightweight linear
programming algorithm with three steps: sub-deadline allocation, topology sorting, and task
offloading sub-algorithms. The proposed algorithm derives from the original ITGO (Invasive
Tumor Growth Optimization) algorithm. Y. Li et al. [5] gave the scheduling target function
according to the delay limitation by the potential game equation, and the MD selects MEC
nodes according to the game results to offload tasks. For 5G heterogeneous wireless network,
S. Han [29] proposed a offload algorithm with a congestion-aware WiFi environment. He
proposed a distributed algorithm target to maximizing network utility. Y. Hao et al. [30] given
tasks different priorities for offloading tasks according to the energy consumption and urgency.
They [6] also consider how to immigrate VMs when every node has the ability to collect green
energy. They used the clustering method to decide the location of the VM. And then they
proposed a heuristic algorithm to transfer energy, immigrate VM, and allocate tasks. Li Kuan
et al. [18] took account of multiple users, multiple offloading points, and structured tasks for
offloading tasks. They used genetic algorithm with a greedy strategy to handle the offload
tasks. More work can be found in [15,29–34]. Generally speaking, those methods are giving
the scheduling targets and finding some heuristics algorithm to meet their scheduling targets.
They always pay attentions to the 1-to-1 (one MD and one mobile servers) or 1-to-many
environment (one MD and many mobile servers), and proposed methods to offload tasks.
Different from the above methods, we pay attention to a many-to-many environment.

Some offloading methods are two or more methods working together to complete the
offloading problem. Y. Cui et al. [27] focus on the offloading problem under multi-user and
dynamic environments. They tried to solve channel allocation, and offload the computation
tasks with an evolutionary game model. They designed an evolutionary game algorithm based
on reinforcement learning to offload tasks. W. Tang et al. [4] firstly modeled geo-distributed
mobile edge servers in a peer-to-peer networks. Then, they gave offload method consider
deadline, cost and so on. The method aims to improve the offloading efficiency while meeting
their deadlines.

Some research also finds the offloading method by reinforcement learning methods [21],
[25], [27], [28]. M. Hossain et al. [28] used an optimal binary computational offloading
decision method to define the offloading problem and then solve the problem by reinforcement
learning. Q. Qi et al. [25] formulated the offloading decision for multiple tasks considering a
long-term time. They used the recent deep reinforcement learning to solve the offloading
problem. The method scruples the future data dependence and continually online learning to
improve its performance. J. Wang et al. [37] focused on the offloading problem of the
vehicular user (VU) in MEC-enabled vehicular networks. They optimized the offloading
problem by considering the time and the energy consumption for transferring files, and local
DVFS attributes of local devices. H. Lu et al. [38] focused the offloading problem in the large-
scale heterogeneous mobile edge computing environment. They supposed that there are
multiple service nodes and the tasks are independent to each other. They solved the offloading
problem by using the LSTM network layer and the candidate network set to offload tasks in
ab environment of the MEC. Other methods based on reinforcement learning can be found in
[39], [40]. In the Vehicular ad-hoc network (VANET), U Maan et al. [41] tried to offload tasks
by the estimation of vehicles’ future locations. They used Kalman filter prediction scheme to

3606 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

estimate the vehicle’s next location and deep Q network-based reinforcement learning to select
the resources-rich fog node in VANET. Those reinforcement learning based offloading
methods always give offload method from the view of task. They neglect the fact that a task
is offloaded or not to the remote cloud influences the system load of the cloud and the MD,
thus influencing whether the coming task can be offloaded to the remote cloud. We try to
consider the influence in the paper.

With more attention having been given to the offloading problem in MCE, researchers give
new directions to the scheduling targets, such as cost, security, and so on[1], [2], [14], [19],
[20], [24]. Those are not related to our paper. Therefore, we do not try to introduce them here.

3. System framework and the related models
In this section, the system framework and the related models are introduced as follows.

3.1 The framework of offload tasks from a MD to remote servers

Mobile 1 Mobile 2 Mobile 3 Mobile 4

Mobile server 1 Mobile server 2

Mobile server 3

Fig. 1. Multiple MDs and multiple mobile servers

In Fig. 1, there are three mobile servers (mobile servers 1~3) and four MDs (MDs 1~4). A
MD connects with multiple mobile servers, such as the MD 1 can connect with mobile servers
1~3 with different bandwidths. Different routes between MDs and mobile servers have
different metrics in sending/receiving rate, sending/receiving power consumption. So, in
scheduling, how to select routes is one of the most important issues to ensure a lower energy
consumption for the MD.

The architecture involved in our paper includes four components (Fig. 2): tasks, the mobile
server manager, the mobile manager, and cloud resources. When the MD gets a task, the
mobile scheduling manager will select the execution location according to the offloading
method. However, the execution location is based on multiple facts, including the bandwidth
between MDs and the remote mobile server, the energy consumption in various places, and
other requirements of users. The mobile server manager (MSM) collects the information of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3607

jobs and monitors the system load of the remote mobile server, and also allocates the mobile
server for offloading jobs submitted from a MD. The MSM selects a mobile server for every
job according to the energy consumption on various remote mobile servers and the system
load. It even adds resources dynamically to the system when it is overloaded. With the help of
virtualization technology, MSM can add more VMs (as mobile servers) to the system if the
system needs.

Mobile scheduling manager

R1 R2

R3 R4

mobile server manager

Tasks(Cloud)

R1 R2

R3 R4

R1 R2

R3 R4

Tasks

Mobile scheduling manager

Tasks(Cloud)

Tasks

Fig. 2. The framework of offloading tasks

3.2 The related models
Table 1 lists all parameters used in the paper. 𝑁𝑁𝑁𝑁 is the number of MDs, 𝑁𝑁𝑁𝑁 is the number

of mobile servers. For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 located on 𝑛𝑛𝑛𝑛th MD, 𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 is the deadline of the job. 𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖
is the arriving time. 𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 and 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 are the size of input files and output files. 𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 is the
number of instructions (million instructions (MI)).

𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 = �𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 ,𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 � (1)
In formula (1), 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 denotes the execution place. If it equals 0, job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 is executed on the

𝑛𝑛𝑛𝑛th MD; otherwise, it denotes the selected remote mobile server. 𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛 is the computing
power consumption of the 𝑛𝑛𝑛𝑛th MD. As to formula (2), it is always denoted by a map between
computing voltage 𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙 , power consumption 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙 and processing ability 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙 . 𝑀𝑀𝐶𝐶𝑛𝑛𝑛𝑛 is the
number of mapping sets.

𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛=<V𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙 > (2)
For mobile server 𝑁𝑁𝑛𝑛𝑛𝑛, 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 is the number of cores in 𝑛𝑛𝑛𝑛th mobile server, 𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛 is the

processing ability of every core in 𝑛𝑛𝑛𝑛th mobile server, 𝐿𝐿𝑛𝑛𝑛𝑛 is the system load of the mobile
server.

 𝑁𝑁𝑛𝑛𝑛𝑛 = {𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛,𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛, 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛} (3)
The total computational ability of the mobile server is 𝐶𝐶𝑛𝑛𝑛𝑛, denoted as follows:

𝐶𝐶𝑛𝑛𝑛𝑛 = 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛 (4)
𝐵𝐵(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) is the bandwidth between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server.

3608 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

Table 1. Metrics used in our paper:
Metrics Meaning
𝑁𝑁𝑁𝑁 Number of MDs
𝑁𝑁𝑁𝑁 Number of mobile servers
𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛 The total number of tasks in 𝑛𝑛𝑛𝑛th MD
𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 The 𝑖𝑖th task from 𝑛𝑛𝑛𝑛th MD
𝐸𝐸𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 Energy consumption of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝐸𝐸𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 Execution time of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖 If 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖 = 1, it has been finished, otherwise, it isn’t.
𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 The deadline of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖 The arrival time of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖

𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 and 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 The size of input files and out files of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 The number of instructions of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 The execution place of 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖
𝑙𝑙 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD
𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙 computing voltage of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD
𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙 power consumption of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD
𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙 processing ability of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD

𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛 A mapping set between 𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙 and 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙
𝑁𝑁𝑛𝑛𝑛𝑛 The 𝑛𝑛𝑛𝑛th mobile server
𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 The number of cores in 𝑛𝑛𝑛𝑛th mobile server
𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛 The processing ability of every core in 𝑛𝑛𝑛𝑛th mobile server
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 The load of 𝑛𝑛𝑛𝑛th mobile server
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 The load of 𝑛𝑛𝑛𝑛th MD

𝑁𝑁𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The sending rate between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server

𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The power consumption for sending files from 𝑛𝑛𝑛𝑛 th MD to 𝑛𝑛𝑛𝑛 th mobile
server

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The receiving rate between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server

𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The power consumption for receiving files from 𝑛𝑛𝑛𝑛th MD to 𝑛𝑛𝑛𝑛th mobile
server

For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 , let function 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) return whether it has been completed; function

𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) is the energy consumption of job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 , so,
 Maximizing:

 𝐷𝐷𝑇𝑇𝑇𝑇1 = ∑𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) (5)
𝐷𝐷𝑇𝑇𝑇𝑇2 = ∑(𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 + 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖) ∗ 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) (6)

𝐷𝐷𝑇𝑇𝑇𝑇3 = ∑𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) (7)
Minimizing:

𝐷𝐷𝑇𝑇𝑇𝑇4 = ∑𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) ∗ 𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖) (8)
Subject to:

𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1 (9)
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1 (10)

For 𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖), the energy consumption on the MD (when it is executed on the MD) and the
energy for transferring files (when it is offloaded to a mobile server) are two important factors
for offloading tasks. We do not consider the energy consumption for computation on the
mobile server. We have four targets in the scheduling: maximizing the number of completed
jobs (formula (5)), maximizing the size of input files and output files (formula (6)),

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3609

maximizing the completed instructions (formula (7)) and minimizing the total energy
consumptions (formula (8)). Formulas (9) and (10) to ensure every MD and every mobile
server is not overload in the scheduling.

When 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 is executed on the MD, the execution time 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑖𝑖 and the energy consumption
𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 (MD working on 𝑛𝑛𝑒𝑒𝑙𝑙𝑙𝑙th state) are:

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑖𝑖 = �

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 0;

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 ≠ 0.

 (11)

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 = �

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
∗ 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 0;

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛) 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 ≠ 0.
 (12)

In formula (12), suppose that we select the 𝑛𝑛𝑒𝑒𝑙𝑙𝑙𝑙th working stage of the MD.

4. An offload heuristic to offload tasks from multiple mobile nodes to
mobile servers

In this section, first, we give the offload method to the MD, and then we analyze the
complexity of the proposed method.

4.1 Scheduling method for the mobile nodes and mobile servers
As mentioned in formula (12), we get energy consumption when a job is executed on the

MD (𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖) (Formula (13)) and on the mobile server (𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖) (Formula (14)):

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
∗ 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑙𝑙𝑙𝑙 (13)

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) (14)

We judge the preferring location by judging 𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑛𝑛
𝑖𝑖 and 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 which has a lower value.

We also take account of the execution time on the MD (𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛
𝑖𝑖) and the mobile server (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖):

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
 (15)

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 (16)

From the above analysis, if 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 is more than 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 prefers to select the
remote server, otherwise, the job prefers to execute on the mobile node. The problem is
formulas (14) and (15) have different values when the MDs select different mobile servers
(different routes have different bandwidth and energy consumption for transferring files). Here
we give a parameter 𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) to illustrate the bandwidth efficiency:

𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) = 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛)/𝑁𝑁𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)/𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) (17)
And another parameter 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 to illustrate the energy consumption efficiency on the MD

and the mobile server:
𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 (18)

For every MD, we suppose that every MD connects with the mobile server with the highest
bandwidth efficiency (𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)), the saving energy is:

𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 (19)
For every MD (𝑛𝑛𝑛𝑛), we have such targets:

3610 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

Maximizing:
𝑒𝑒𝑇𝑇1𝑛𝑛𝑛𝑛 = ∑ 𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 𝑖𝑖 (20)
𝑒𝑒𝑇𝑇2𝑛𝑛𝑛𝑛 = ∑ 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 𝑖𝑖 (21)

Subject to:
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1 (22)

Formulas (20) and (21) are the total energy consumption efficiency and the total energy
saving. For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 in the MD (𝑛𝑛𝑛𝑛), 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 denotes the execution location, if it is, 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖
equals 1, otherwise, it is 0. So, the problem becomes a 0-1 integer programming problem.

To reduce the complexity of the problem, we first use FCFS policy for the jobs when the
system load (𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛) of the MD is less than α. We rank every job in every MD according to the
ascending order of 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 , and schedule the job as FCFS policy until the system is more than
α. When the system load is more than α, we use the 0-1 integer programming to solve the
scheduling problem. Algorithm 1 gives the details:

Algorithm 1: Sch-Device()
1: For each MD (𝑛𝑛𝑛𝑛)
2: Rank jobs in every MD according to the descending order of 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 ;
3: While 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ α
4: Schedule the first job and update the system load 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 of the MD
5: Endwhile
6: EndFor
7: While (all MD is overload) or (all tasks have been completed)
8: For MD 𝑛𝑛𝑛𝑛 in 𝑁𝑁𝑁𝑁
9: Solve the scheduling problem in formulas (20) to (22) as a 0-1 programming problem;
10: For every job in MD 𝑛𝑛𝑛𝑛
11: If 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 1
12: Schedule job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 on the MD;
13: EndIf
14: EndFor
15: EndFor
16: EndWhile

In algorithm 1, first of all, we rank jobs in every MD according to the descending order of

𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 (Line 1, in algorithm 1; same in the following paragraph). Then, we select job one by
one until the system load is more than α (lines 2~5). Then, we use the 0-1 programming
method to schedule jobs (line 9). Our targets include formulas (20) and (21). If 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 equals 1,
the job will be executed on the MD (line 12); otherwise, we drop and send it to the waiting list
to be processed on mobile servers.

After that, all jobs need to be offloaded to a mobile server and the problem is how to select
which mobile server. Here, we take a suffrage policy: we check every job in the scheduling to
find the lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖), and the second-lowest value 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
(denoted as 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖):

 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 (19)
We select the job with the maximizing 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 , and allocate the job to the related mobile

server. Algorithm 2 gives the detail.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3611

Algorithm 2: Sch-jobs()
1: 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 = 0;
2: While the job list is not NULL
3: For every job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 in the job list
4: Get the lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖) when it is offloaded to the mobile server 𝑒𝑒𝑛𝑛1;
5: Get the second lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖) when it is offloaded to the mobile

server 𝑒𝑒𝑛𝑛2;
6: 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 ;
7: If 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 > 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖
8: 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡;
9: 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 = 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ;
10: 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛 = 𝑒𝑒𝑛𝑛1;
11: EndIf
12: EndFor
13: Allocate 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 to 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛.
14: Update the system load of every mobile server.
15: EndWhile

In Algorithm 2, 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 (Line 1, Algorithm 2; same in the following paragraph) is used to

record the maximizing Sufferage [42] of Formula (19). Lines 4 and 5 find the lowest 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
and the second lowest 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , denoted by 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 and 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 . Line 6 gets the difference
between 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 and 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 . Lines 7~11 find the job with the lowest 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 . 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 and 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛 are
the selected job and the selected mobile server. Line 13~14 allocate the selected job 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 to
the selected mobile server 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛, and then update the system load of the selected mobile server.

4.2 Complexity analysis
Algorithm 1 has two parts: lines 1-6 and lines 7-16. For the first part, the complexity of lines

1-6 is O(max (𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)); 𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛 is the total number of tasks in 𝑛𝑛𝑛𝑛th MD. For the second part,
because the task that can be allocated to a mobile node is a constant (ensuring the system load
is less than α), the complexity of line 9 is O(1). So, the complexity of the second part is O(1 ∗
𝑁𝑁𝑁𝑁). Thus:

O(Algorithm 1) = O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) + O(𝑁𝑁𝑁𝑁)
For Algorithm 2, line 4 and line 5 have the same complexity: O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)). Line 3 also

has a complexity of O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)). So, the complexity of Algorithm 2 is:
O(Algorithm 1) = O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛))

In conclusion, the complexity of our algorithm is:
 O = O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) + O(𝑁𝑁𝑁𝑁) + O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛))

 = O(𝑁𝑁𝑁𝑁) + O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛))

5. Simulations and comparisons
5.1 Simulation environment
The parameters in the simulation environment are given in Table 2. We suppose that the
system has 20000 jobs, and the number of instructions of each job is a random in [1 100000]MI
(Million instructions). The file size of the input and output files is in the scope of [0 1000]M.
Each MD has 4 cores and each has a random computing speed in 1800~2200MHz. The
working power consumption of the MD is random in 0.4~0.6W and the idle power
consumption is 0.001W. Each mobile server has 16 cores and each has a random computing

3612 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

speed in 2000~3000 MHz. The sending rate between the MD and mobile server is a random
number in 6~8M/s and the receiving rate is a random number in 10~20 M/s. The average power
consumption for receiving data and average power consumption for sending data is 0.05W and
0.1W. The deadline of jobs is 1.4~1.8 (Random) times of the execution time. All the results
are the average value of 100 times. The average arrival rate (AAR) (per. hour) is changed from
400 to 500 with a step of 10. There are 10 MDs and 10 mobile servers in the simulation
environment. We will evaluate five metrics of the four methods: AET (Average execution
time), NCJ (Number of completed jobs), AEC (Average energy consumption), NOI (number
of instructions of completed tasks) and FS (files size of completed jobs). According to the
parameters used in Table 1, the five metrics are given as follows:

𝑁𝑁𝐿𝐿𝐽𝐽 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖
𝐴𝐴𝐸𝐸𝐷𝐷 = ∑ ∑ 𝐸𝐸𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽
𝐴𝐴𝐸𝐸𝐿𝐿 = ∑ ∑ 𝐸𝐸𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽

𝑁𝑁𝑂𝑂𝐼𝐼 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽
𝐹𝐹𝑁𝑁 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 ∗ (𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 + 𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛

𝑖𝑖)/ 𝑁𝑁𝐿𝐿𝐽𝐽

Table 2. Parameters used in the simulation
Parameters Values
Working frequency of the MD (4 cores) 1800~2200MHz
Working frequency of mobile server (16 cores) 2000~3000MHz
Working power consumption of the MD 0.4~0.6W
Idle power consumption of the MD 0.001W
Average power consumption for receiving data (100M/s) 0.05W
Average power consumption for sending data (10M/s) 0.1W
Receiving data rate (from MD to mobile server) 50~150M/s
Seeding data rate (from MD to mobile server) 20~80M/s

5.2 Comparisons and discussions
We will compare our method with Tradeoff (TDO) [43]–[45], adaptive offloading (AO) [16]
and Dynamic Programming-based Energy Saving Offloading (DPESO) algorithm [46].
DPESO gave the offloading method by considering the offloading option, offloading sequence
and transmission power by judging the location where the job saves more energy. The TDO is
an intelligent computation offloading system that makes tradeoff decisions for code offloading
from the MD to the cloud to reduce energy consumption. AOD uses a fitness function to
evaluate the offloading scheme. We will compare those four methods in the following metrics:
number of un-completed jobs (NUJ) (Fig. 3), average energy consumption (AEC) (Fig. 4),
average execution time (AET) (Fig. 5), number of instructions of completed tasks (NOI) (Fig.
6) and files size of completed tasks (FS) (Fig. 7). We call our method as “Sufferage” in the
simulation which includes Algorithm 1 and Algorithm 2.

Fig. 3 is the AET of DPESP, AO, and TDO. Sufferage always has the lowest value in AET
under any AARs. The AET of Sufferage, DPESP, AO, and TDO is 6.3528 (s), 6.8672 (s),
7.4151 (s), and 7.6302 (s), respectively. Fig. 4 is the AEC of those methods when AARs are
changed from 400 to 500 with a step of 10. The ascending order of AECs of those four methods
is Sufferage, DPESP, AO, and TDO. To AECs of DPESP, AO, and TDO, Sufferage average
reduces 0.3314, 0.2479, and 0.6191, about 10.39%, 8.43%, and 24.09%. Sufferage performs
best in AEC and AET because the scheduling algorithm in the MD ensures the lowest cost and
the scheduling algorithm in the mobile server considers the future influence on the scheduling
order. When Sufferage offloads tasks, it makes that the task has a lower execution time and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3613

energy consumption when the task is executed on the MD. Moreover, when the task is
offloaded to the mobile server, it considers the influence of scheduling tasks. Other methods
just consider the scheduling result and give a static judgment (such as tradeoff, fit function,
and others) for the scheduling. Therefore, sometime, the scheduling of some tasks makes the
coming tasks do not have a lower energy consumption in the future.

Fig. 3. AET under different AARs

Fig. 4. AEC under different AEC

3614 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

Fig. 5. NUJ under different AARs

Fig. 6. NOI under different AAR

Fig. 7. SF under different AAR

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3615

Fig. 5 is the NUJ of those four methods under different AARs. Sufferage always has the
lowest value in NUJs, followed by DPESP, AO, and TDO. To the NUJ of DPESP, AO and
TDO, Sufferage average reduces 206.6804, 413.2690, and 1072.8, about 14.40%, 25.17% and
46.61%. Fig. 6 and Fig. 7 are the NOI and FS of all methods. In general, the four methods in
Fig. 6 and Fig. 7 have the same trend with NUJ in Fig. 6. Compared to NOI of DPESP, AO
and TDO, Sufferage average reduces (in billion MI) 2.4794, 2.5434 and 0.2954, respectively.
Compared to SF of DPESP (Fig. 7), AO and TDO, Sufferage average reduces (in ten thousand
M) by 7.5965, 4.1228e and 1.5004, respectively. Generally speaking, all those methods have
an increasing trend in NUJ (Fig. 3), AET (Fig. 5) and AEC (Fig. 4), and have a decreasing
trend in NOI (Fig. 6) and FS (Fig. 7) with the enhancement of AARs. With the enhancement
of AARs, the system has a higher system load, more tasks cannot be completed before their
deadlines, thus enhancing NUJ and decreasing FS and NOI. It also makes the system have a
larger value in AET and ACE. Sufferage makes full of use local and the mobile server
resources, thus having a minimum value in NUJ. At the same time, when the total number of
tasks is a constant, Sufferage may have the highest value in NI and FS.

6. Conclusion and future work
In this paper, we focus on the offloading problem when there are multiple MDs and multiple
mobile servers. Based on the analysis, first, we select the tasks executed on the MD according
to the ration between the energy consumption on the MD and the remote cloud; for the task
executed on the cloud, we propose a suffrage heuristic to offload tasks and select the mobile
server. Simulation results show that our proposed method improves the number of completed
jobs, and reduce energy consumption. We know that the mobile node may have the ability to
harvest energy, so how to use the energy and reduce the energy consumption from other system
is the two key problems. We may pay some attention to the new environment and give
offloading method. As to the future work, we may use Image Retagging technology [47], [48]
to manage the network of the MD for task offloading.

Reference
[1] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey on computation offloading

modeling for edge computing,” J. Netw. Comput. Appl., vol. 169, no. July, p. 102781, 2020.
Article (CrossRef Link)

[2] K. Kumar, J. Liu, Y. H. Lu, and B. Bhargava, “A survey of computation offloading for mobile
systems,” Mob. Networks Appl., vol. 18, no. 1, pp. 129–140, 2013. Article (CrossRef Link)

[3] J. Lu, Y. Hao, K. Wu, Y. Chen, and Q. Wang, “Dynamic offloading for energy-aware scheduling
in a mobile cloud,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3167–3177, 2022,
Article (CrossRef Link)

[4] W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou, and Q. Ni, “An offloading method using
decentralized P2P-enabled mobile edge servers in edge computing,” J. Syst. Archit., vol. 94, pp.
1–13, 2019. Article (CrossRef Link)

[5] Y. Li and C. Jiang, “Distributed task offloading strategy to low load base stations in mobile edge
computing environment,” Comput. Commun., vol. 164, pp. 240–248, 2020.

Article (CrossRef Link)
[6] Y. Hao, J. Cao, Q. Wang, and J. Du, “Energy-aware scheduling in edge computing with a

clustering method,” Futur. Gener. Comput. Syst., vol. 117, pp. 259–272, 2021.
Article (CrossRef Link)

http://doi.org/doi:%2010.1016/j.jnca.2020.102781
http://doi.org/doi:%2010.1007/s11036-012-0368-0
http://doi.org/doi:10.1016/j.jksuci.2022.03.029
http://doi.org/%20doi:%2010.1016/j.sysarc.2019.02.001
http://doi.org/doi:%2010.1016/j.comcom.2020.10.021
https://doi.org/10.1016/j.future.2020.11.029

3616 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

[7] B. B. Bista, J. Wang, and T. Takata, “Probabilistic computation offloading for mobile edge
computing in dynamic network environment,” Internet of Things, vol. 11, p. 100225, 2020.

Article (CrossRef Link)
[8] W. Huang, K. Ota, M. Dong, T. Wang, S. Zhang, and J. Zhang, “Result return aware offloading

scheme in vehicular edge networks for IoT,” Comput. Commun., vol. 164, pp. 201–214, 2020.
Article (CrossRef Link)

[9] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and Computation
Offloading,” IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

Article (CrossRef Link)
[10] H. Guo and J. Liu, “Collaborative computation offloading for multiaccess edge computing over

fiber-wireless networks,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526, 2018.
Article (CrossRef Link)

[11] Y. Hao, Q. Wang, J. Cao, T. Ma, J. Du, and X. Zhang, “Interval grey number of energy
consumption helps task offloading in the mobile environment,” ICT Express, 2022.

Article (CrossRef Link).
[12] K. Li, “Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in

Mobile Edge Computing,” IEEE Trans. Sustain. Comput., pp. 1–1, 2019. Article (CrossRef Link)
[13] M. Wang, L. Zhu, L. T. Yang, M. Lin, X. Deng, and L. Yi, “Offloading-assisted energy-balanced

IoT edge node relocation for confident information coverage,” IEEE Internet Things J., vol. 6, no.
3, pp. 4482–4490, 2019. Article (CrossRef Link)

[14] X. Chen, S. Chen, Y. Ma, B. Liu, Y. Zhang, and G. Huang, “An adaptive offloading framework
for Android applications in mobile edge computing,” Sci. China Inf. Sci., vol. 62, no. 8, pp. 1–17,
2019. Article (CrossRef Link)

[15] E. El Haber, T. M. Nguyen, and C. Assi, “Joint Optimization of Computational Cost and Devices
Energy for Task Offloading in Multi-Tier Edge-Clouds,” IEEE Trans. Commun., vol. 67, no. 5,
pp. 3407–3421, 2019. Article (CrossRef Link)

[16] L. Kuang, T. Gong, S. OuYang, H. Gao, and S. Deng, “Offloading decision methods for multiple
users with structured tasks in edge computing for smart cities,” Futur. Gener. Comput. Syst., vol.
105, pp. 717–729, 2020. Article (CrossRef Link)

[17] L. Chen, X. Li, H. Ji, and V. C. M. Leung, “Computation offloading balance in small cell networks
with mobile edge computing,” Wirel. Networks, vol. 25, no. 7, pp. 4133–4145, 2019.

Article (CrossRef Link)
[18] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance cloudlets for

computation offloading in mobile ad hoc clouds,” J. Supercomput., vol. 71, no. 8, pp. 3009–3036,
2015. Article (CrossRef Link)

[19] J. Long, Y. Luo, X. Zhu, E. Luo, and M. Huang, “Computation offloading through mobile vehicles
in IoT-edge-cloud network,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, 2020.

Article (CrossRef Link)
[20] X. Wei et al., “MVR: An Architecture for Computation Offloading in Mobile Edge Computing,”

in Proc. of 2017 IEEE 1st Int. Conf. Edge Comput. EDGE 2017, pp. 232–235, 2017.
Article (CrossRef Link)

[21] L. Yang, C. Zhong, Q. Yang, W. Zou, and A. Fathalla, “Task offloading for directed acyclic graph
applications based on edge computing in Industrial Internet,” Inf. Sci. (Ny)., vol. 540, pp. 51–68,
2020. Article (CrossRef Link)

[22] Q. Qi et al., “Knowledge-Driven Service Offloading Decision for Vehicular Edge Computing: A
Deep Reinforcement Learning Approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4192–
4203, 2019. Article (CrossRef Link)

[23] S. K. Dash, S. Dash, J. Mishra, and S. Mishra, “Opportunistic Mobile Data Offloading Using
Machine Learning Approach,” Wirel. Pers. Commun., vol. 110, no. 1, pp. 125–139, 2020.

Article (CrossRef Link)
[24] Y. Cui, D. Zhang, T. Zhang, L. Chen, M. Piao, and H. Zhu, “Novel method of mobile edge

computation offloading based on evolutionary game strategy for IoT devices,” AEU - Int. J.
Electron. Commun., vol. 118, p. 153134, 2020. Article (CrossRef Link)

http://doi.org/doi:%2010.1016/j.iot.2020.100225
http://doi.org/doi:%2010.1016/j.comcom.2020.10.019
http://doi.org/doi:%2010.1109/COMST.2017.2682318
http://doi.org/doi:%2010.1109/TVT.2018.2790421
http://doi.org/doi:%2010.1016/j.icte.2022.03.005
http://doi.org/doi:%2010.1109/tsusc.2019.2904680
http://doi.org/doi:%2010.1109/JIOT.2018.2876409
http://doi.org/doi:%2010.1007/s11432-018-9749-8
http://doi.org/doi:%2010.1109/TCOMM.2019.2895040
http://doi.org/doi:%2010.1016/j.future.2019.12.039
http://doi.org/10.1007/s11276-018-1735-y
http://doi.org/10.1007/s11227-015-1425-9
http://doi.org/10.1186/s13638-020-01848-5
http://doi.org/doi:%2010.1109/IEEE.EDGE.2017.42
http://doi.org/doi:%2010.1016/j.ins.2020.06.001
http://doi.org/doi:%2010.1109/TVT.2019.2894437
http://doi.org/doi:%2010.1007/s11277-019-06715-1
http://doi.org/doi:%2010.1016/j.aeue.2020.153134

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022 3617

[25] M. S. Hossain, C. I. Nwakanma, J. M. Lee, and D. S. Kim, “Edge computational task offloading
scheme using reinforcement learning for IIoT scenario,” ICT Express, vol. 6, no. 4, pp. 291–299,
2020. Article (CrossRef Link)

[26] F. Xu, W. Yang, and H. Li, “Computation offloading algorithm for cloud robot based on improved
game theory,” Comput. Electr. Eng., vol. 87, pp. 1–11, 2020. Article (CrossRef Link)

[27] S. Han, “Congestion-aware WiFi offload algorithm for 5G heterogeneous wireless networks,”
Comput. Commun., vol. 164, pp. 69–76, 2020. Article (CrossRef Link)

[28] Y. Hao, J. Cao, Q. Wang, and T. Ma, “Energy-aware offloading based on priority in mobile cloud
computing,” Sustain. Comput. Informatics Syst., vol. 31, p. 100563, 2021. Article (CrossRef Link)

[29] A. Hekmati, P. Teymoori, T. D. Todd, D. Zhao, and G. Karakostas, “Optimal multi-part mobile
computation offloading with hard deadline constraints,” Comput. Commun., vol. 160, pp. 614–
622, 2020. Article (CrossRef Link)

[30] Y. Hao, J. Cao, Q. Wang, and T. Ma, “Energy-aware offloading based on priority in mobile cloud
computing,” Sustain. Comput. Informatics Syst., vol. 31, p. 100563, 2021. Article (CrossRef Link)

[31] X. Chen et al., “Cooling-Aware Optimization of Edge Server Configuration and Edge
Computation Offloading for Wirelessly Powered Devices,” IEEE Trans. Veh. Technol., vol. 70,
no. 5, pp. 5043–5056, 2021. Article (CrossRef Link)

[32] W. Zhou, L. Xing, J. Xia, L. Fan, and A. Nallanathan, “Dynamic Computation Offloading for
MIMO Mobile Edge Computing Systems with Energy Harvesting,” IEEE Trans. Veh. Technol.,
vol. 70, no. 5, pp. 5172–5177, 2021. Article (CrossRef Link)

[33] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, and X. Chen, “Dynamic Offloading and Resource Scheduling
for Mobile Edge Computing With Energy Harvesting Devices,” IEEE Trans. Netw. Serv. Manag.,
vol. 18, no. 2, pp. 2154–2165, 2021. Article (CrossRef Link)

[34] A. Asheralieva and T. D. Niyato, “Fast and Secure Computational Offloading with Lagrange
Coded Mobile Edge Computing,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4924–4942, 2021.
Article (CrossRef Link)

[35] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading Tasks with Dependency and Service
Caching in Mobile Edge Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11, pp.
2777–2792, 2021. Article (CrossRef Link)

[36] J. Wang, D. Feng, S. Zhang, J. Tang, and T. Q. S. Quek, “Computation Offloading for Mobile
Edge Computing Enabled Vehicular Networks,” IEEE Access, vol. 7, pp. 62624–62632, 2019.
Article (CrossRef Link)

[37] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task offloading strategy
for mobile edge computing based on deep reinforcement learning,” Futur. Gener. Comput. Syst.,
vol. 102, pp. 847–861, 2020. Article (CrossRef Link)

[38] X. Zhao, Q. Zong, B. Tian, B. Zhang, and M. You, “Fast task allocation for heterogeneous
unmanned aerial vehicles through reinforcement learning,” Aerosp. Sci. Technol., vol. 92, pp.
588–594, 2019. Article (CrossRef Link)

[39] R. Zhao, X. Wang, J. Xia, and L. Fan, “Deep reinforcement learning based mobile edge computing
for intelligent Internet of Things,” Phys. Commun., vol. 43, p. 101184, 2020.

Article (CrossRef Link)
[40] U. Maan and Y. Chaba, “Deep Q-Network based fog Node Offloading strategy for 5G Vehicular

Adhoc Network,” Ad Hoc Networks, vol. 120, p. 102565, 2021. Article (CrossRef Link)
[41] E. K. Tabak, B. B. Cambazoglu, and C. Aykanat, “Improving the performance of independenttask

assignment heuristics minmin,maxmin and sufferage,” IEEE Trans. Parallel Distrib. Syst., vol.
25, no. 5, pp. 1244–1256, 2014. Article (CrossRef Link)

[42] M. E. Khoda, M. A. Razzaque, A. Almogren, M. M. Hassan, A. Alamri, and A. Alelaiwi,
“Efficient Computation Offloading Decision in Mobile Cloud Computing over 5G Network,” Mob.
Networks Appl., vol. 21, no. 5, pp. 777–792, 2016. Article (CrossRef Link)

[44] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-Efficient UAV-Assisted
Mobile Edge Computing: Resource Allocation and Trajectory Optimization,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 3, pp. 3424–3438, 2020. Article (CrossRef Link)

http://doi.org/doi:%2010.1016/j.icte.2020.06.002
http://doi.org/doi:10.1016/j.compeleceng.2020.106764
http://doi.org/doi:10.1016/j.comcom.2020.10.006
http://doi.org/doi:%2010.1016/j.suscom.2021.100563
http://doi.org/doi:10.1016/j.comcom.2020.07.014
http://doi.org/doi:10.1016/j.suscom.2021.100563
http://doi.org/doi:10.1109/TVT.2021.3076057
http://doi.org/doi:10.1109/TVT.2021.3075018
http://doi.org/doi:10.1109/TNSM.2021.3069993
http://doi.org/doi:10.1109/TVT.2021.3070723
http://doi.org/doi:10.1109/TPDS.2021.3076687
http://doi.org/doi:10.1109/ACCESS.2019.2915959
http://doi.org/doi:10.1016/j.future.2019.07.019
http://doi.org/doi:10.1016/j.ast.2019.06.024
http://doi.org/doi:10.1016/j.phycom.2020.101184
http://doi.org/doi:10.1016/j.adhoc.2021.102565
http://doi.org/doi:10.1109/TPDS.2013.107
http://doi.org/doi:10.1007/s11036-016-0688-6
https://doi.org/10.1109/TVT.2020.2968343

3618 Zhang et al.: A Sufferage offloading tasks method for multiple edge servers

[45] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy for collaborative execution
in mobile cloud computing,” in Proc. of IEEE INFOCOM, pp. 190–194, 2013.

Article (CrossRef Link)
[46] Y. Zhang and J. Fu, “Energy-efficient computation offloading strategy with tasks scheduling in

edge computing,” Wirel. Networks, vol. 27, no. 1, pp. 609–620, 2021. Article (CrossRef Link)
[47] J. Tang et al., “Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1662–1674, 2017. Article (CrossRef Link)
[48] J. Tang, X. Shu, Z. Li, Y. G. Jiang, and Q. Tian, “Social Anchor-Unit Graph Regularized Tensor

Completion for Large-Scale Image Retagging,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 8, pp. 2027–2034, 2019. Article (CrossRef Link)

Tao Zhang is sensor engineer of Changde City Tobacco Company. His work focuses on
CISCO, CCNP and other kinds of network system. His research interesting includes the
resource scheduling in Cloud computing, edge computing and other system.

Mingfeng Cao He Mainly engaged in tobacco production and cultivation aspects of research.
He has published some papers about the information system about the management of tobacco
product.

Yongsheng Hao received his MS Degree of Engineering from Qingdao University in 2008.
Now, he is a sensor engineer of Information management department, Nanjing University of
Information Science & Technology. His current research interests include distributed and
parallel computing, mobile computing, Grid computing, web Service, particle swarm
optimization algorithm and genetic algorithm. He has published 50 papers in international
conferences and journals.

http://doi.org/doi:10.1109/INFCOM.2013.6566761
http://doi.org/doi:10.1007/s11276-020-02474-1
http://doi.org/doi:10.1109/TPAMI.2016.2608882
http://doi.org/doi:10.1109/TPAMI.2019.2906603

