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Abstract 

 
The offloading method is important when there are multiple mobile nodes and multiple edge 
servers. In the environment, those mobile nodes connect with edge servers with different 
bandwidths, thus taking different time and energy for offloading tasks. Considering the system 
load of edge servers and the attributes (the number of instructions, the size of files, deadlines, 
and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile 
edge environment (MCE). Most of the past work mainly offloads tasks by judging where the 
job consumes less energy. But sometimes, one task needs more energy because the preferred 
edge servers have been overloaded. Those methods always do not pay attention to the influence 
of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when 
the job costs a lower energy consumption executed on the MD. We suppose that every task is 
submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth 
efficiency is defined by the sending ratio, the receiving ratio, and their related power 
consumption. We sort the task in the descending order of the ratio between the energy 
consumption executed on the mobile server node and on the MD. Then, we give a “suffrage” 
definition for the energy consumption executed on different mobile servers for offloading tasks. 
The task selects the mobile server with the largest suffrage. Simulations show that our method 
reduces the execution time and the related energy consumption, while keeping a lower value 
in the number of uncompleted tasks. 
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1. Introduction 

Mobile devices bring great convenience to people’s life [1]–[3] But the limitation in 
processing ability and energy supply hinders its usage [4]. Offloading some tasks to remote 
mobile servers is a solution to overcome those shortcomings [5]–[9]. The Offloading method 
brings two benefits for the mobile device (MD): improving the processing ability and reducing 
energy consumption. It makes that the MD overcomes overloaded when it has a higher system 
load. With the help of the remote servers, the MD also can reduce the energy consumption in 
some cases.  

Several prototype systems have been used to offload tasks for MDs [1]–[3], [10]–[12] with 
different targets and different environments.  The target of offloading tasks from local to a 
server includes: reducing the energy consumption of the MD, shortening the execution time, 
and meeting other QoSs (Quality of Services) [13]–[15]. If the execution location is select 
smartly, energy consumption can be reduced while keeping other requirements [16], [17]. How 
select the execution location is the key problem for offloading tasks for MDs. The network 
also influences the energy consumption for offloading tasks, because the different network has 
different bandwidth and energy consumption, which influences the execution time for 
transferring files and the related energy consumption. The dynamic network makes whether 
offloading has a different effect on the MD of the energy consumption, execution time, and so 
on. Prior work has been widely evaluated in various networks, such as 2G/3G/4G/5G network 
[7], [8], [18]–[20]. 

Previous offloading methods always begin with judging the location where the task has 
lower energy consumption [2], [21]. Then, according to the deadline of tasks, the bandwidth 
between the MD and the offloaded target location, the system load of the MD and remote 
server, the scheduling method selects the execution location [8], [17], [22]. They always judge 
the preferring location of a task and offload tasks according to the preferring locations. 
Different routes have various energy efficiencies (sending power consumption/sending rate, 
or receiving power consumption/receiving rate). This is the first aspect that we try to pay 
attention to in this paper. If we can offload to many mobile servers make the offloading 
problem more difficult.  Moreover, the past methods always neglect the fact that the task 
influences each other. For example, if a task executed on the MD consumes lower energy than 
in the mobile cloud (2 energy on the MD and 3 energy on the offloaded location), but the next 
task (1 energy on the MD and 10 energy on the offloaded location) may not be executed on 
the MD because of the system load. The condition happens more usually in the many (mobile 
nodes)-to-many (mobile servers) environment. In this paper, we try to offload tasks in a many-
to-many environment by considering the scheduling influence of tasks on each other.  

We organize the paper as follows. Section 2 reviews the offloading methods in mobile 
environment. In Section 3, we give the system architecture and related models used in our 
paper. Section 4 gives a deep analysis of our system, and then gives the offloading method. 
Section 5 compares our proposed method with other methods. Section 6 gives the conclusion 
and the future work. 

 2. Related work 
Offloading methods help MDs to enhance processing ability and lengthen the working time. 
Researchers have much work on offloading methods under various environments. 
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Most offload methods are heuristics algorithms [5], [6], [10], [18], [20], [23]–[28]. B. Li et 
al. [20] study  offload method when the application belongs to computation-intensive 
applications. MinHop, MET and METComm heuristics were used to offload tasks when the 
task dynamically arrives independent. L.Yang et al. [24] formulated the offloading problem 
into an energy-consuming (EC) minimization problem while meeting other constraints. They 
used ASO and Pro-ITGO to offload tasks. The ASO algorithm is a lightweight linear 
programming algorithm with three steps: sub-deadline allocation, topology sorting, and task 
offloading sub-algorithms. The proposed algorithm derives from the original ITGO (Invasive 
Tumor Growth Optimization) algorithm. Y. Li et al. [5] gave the scheduling target function 
according to the delay limitation by the potential game equation, and the MD selects MEC 
nodes according to the game results to offload tasks. For 5G heterogeneous wireless network, 
S. Han [29] proposed a offload algorithm with a congestion-aware WiFi environment. He 
proposed a distributed algorithm target to maximizing network utility. Y. Hao et al. [30] given 
tasks different priorities for offloading tasks according to the energy consumption and urgency. 
They [6] also consider how to immigrate VMs when every node has the ability to collect green 
energy. They used the clustering method to decide the location of the VM. And then they 
proposed a heuristic algorithm to transfer energy, immigrate VM, and allocate tasks. Li Kuan 
et al. [18] took account of multiple users, multiple offloading points, and structured tasks for 
offloading tasks. They used genetic algorithm with a greedy strategy to handle the offload 
tasks. More work can be found in [15,29–34]. Generally speaking, those methods are giving 
the scheduling targets and finding some heuristics algorithm to meet their scheduling targets. 
They always pay attentions to the 1-to-1 (one MD and one mobile servers) or 1-to-many 
environment (one MD and many mobile servers), and proposed methods to offload tasks. 
Different from the above methods, we pay attention to a many-to-many environment.  

Some offloading methods are two or more methods working together to complete the 
offloading problem. Y. Cui et al. [27]  focus on the offloading problem under multi-user and 
dynamic environments. They tried to solve channel allocation, and offload the computation 
tasks with an evolutionary game model. They designed an evolutionary game algorithm based 
on reinforcement learning to offload tasks. W. Tang et al. [4] firstly modeled geo-distributed 
mobile edge servers in a peer-to-peer networks. Then, they gave offload method consider 
deadline, cost and so on. The method aims to improve the offloading efficiency while meeting 
their deadlines. 

Some research also finds the offloading method by reinforcement learning methods [21], 
[25], [27], [28]. M. Hossain et al. [28] used an optimal binary computational offloading 
decision method to define the offloading problem and then solve the problem by reinforcement 
learning. Q. Qi et al. [25] formulated the offloading decision for multiple tasks considering a 
long-term time. They used the recent deep reinforcement learning to solve the offloading 
problem. The method scruples the future data dependence and continually online learning to 
improve its performance. J. Wang et al. [37] focused on the offloading problem of the 
vehicular user (VU) in MEC-enabled vehicular networks. They optimized the offloading 
problem by considering the time and the energy consumption for transferring files, and local 
DVFS attributes of local devices. H. Lu et al. [38] focused the offloading problem in the large-
scale heterogeneous mobile edge computing environment. They supposed that there are 
multiple service nodes and the tasks are independent to each other. They solved the offloading 
problem by using the LSTM network layer and the candidate network set to offload tasks in 
ab environment of the MEC. Other methods based on reinforcement learning can be found in 
[39], [40]. In the Vehicular ad-hoc network (VANET), U Maan et al. [41] tried to offload tasks 
by the estimation of vehicles’ future locations. They used Kalman filter prediction scheme to 
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estimate the vehicle’s next location and deep Q network-based reinforcement learning to select 
the resources-rich fog node in VANET. Those reinforcement learning based offloading 
methods always give offload method from the view of task. They neglect the fact that a task 
is offloaded or not to the remote cloud influences the system load of the cloud and the MD, 
thus influencing whether the coming task can be offloaded to the remote cloud. We try to 
consider the influence in the paper. 

With more attention having been given to the offloading problem in MCE, researchers give 
new directions to the scheduling targets, such as cost, security, and so on[1], [2], [14], [19], 
[20], [24]. Those are not related to our paper. Therefore, we do not try to introduce them here. 

3. System framework and the related models 
In this section, the system framework and the related models are introduced as follows. 

3.1 The framework of offload tasks from a MD to remote servers 

Mobile 1 Mobile 2 Mobile 3 Mobile 4

Mobile server 1 Mobile server 2

Mobile server 3
 

Fig. 1. Multiple MDs and multiple mobile servers 
 

In Fig. 1, there are three mobile servers (mobile servers 1~3) and four MDs (MDs 1~4). A 
MD connects with multiple mobile servers, such as the MD 1 can connect with mobile servers 
1~3 with different bandwidths. Different routes between MDs and mobile servers have 
different metrics in sending/receiving rate, sending/receiving power consumption. So, in 
scheduling, how to select routes is one of the most important issues to ensure a lower energy 
consumption for the MD. 

The architecture involved in our paper includes four components (Fig. 2): tasks, the mobile 
server manager, the mobile manager, and cloud resources. When the MD gets a task, the 
mobile scheduling manager will select the execution location according to the offloading 
method. However, the execution location is based on multiple facts, including the bandwidth 
between MDs and the remote mobile server, the energy consumption in various places, and 
other requirements of users. The mobile server manager (MSM) collects the information of 
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jobs and monitors the system load of the remote mobile server, and also allocates the mobile 
server for offloading jobs submitted from a MD. The MSM selects a mobile server for every 
job according to the energy consumption on various remote mobile servers and the system 
load. It even adds resources dynamically to the system when it is overloaded. With the help of 
virtualization technology, MSM can add more VMs (as mobile servers) to the system if the 
system needs. 
 

Mobile  scheduling manager

R1 R2

R3 R4

mobile server manager

Tasks(Cloud)

R1 R2

R3 R4

R1 R2

R3 R4

Tasks

Mobile  scheduling manager

Tasks(Cloud)

Tasks

 
Fig. 2. The framework of offloading tasks 

 

3.2 The related models 
Table 1 lists all parameters used in the paper. 𝑁𝑁𝑁𝑁 is the number of MDs, 𝑁𝑁𝑁𝑁 is the number 

of mobile servers. For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  located on 𝑛𝑛𝑛𝑛th MD, 𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖  is the deadline of the job. 𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖  
is the arriving time. 𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖  and 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖  are the size of input files and output files. 𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖  is the 
number of instructions (million instructions (MI)). 

𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 = �𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 ,𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 ,𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 ,𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 �                           (1) 
In formula (1), 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  denotes the execution place. If it equals 0, job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  is executed on the 

𝑛𝑛𝑛𝑛th MD; otherwise, it denotes the selected remote mobile server. 𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛  is the computing 
power consumption of the 𝑛𝑛𝑛𝑛th MD. As to formula (2), it is always denoted by a map between 
computing voltage 𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙 , power consumption 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙  and processing ability 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙 . 𝑀𝑀𝐶𝐶𝑛𝑛𝑛𝑛  is the 
number of mapping sets. 

𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛=<V𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙 >                                             (2) 
For mobile server 𝑁𝑁𝑛𝑛𝑛𝑛, 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 is the number of cores in 𝑛𝑛𝑛𝑛th mobile server, 𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛  is the 

processing ability of every core in 𝑛𝑛𝑛𝑛th mobile server, 𝐿𝐿𝑛𝑛𝑛𝑛 is the system load of the mobile 
server. 

 𝑁𝑁𝑛𝑛𝑛𝑛 = {𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛,𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛, 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛}                                             (3) 
The total computational ability of the mobile server is 𝐶𝐶𝑛𝑛𝑛𝑛, denoted as follows: 

𝐶𝐶𝑛𝑛𝑛𝑛 = 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛                                                  (4) 
𝐵𝐵(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) is the bandwidth between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server. 

 



3608                                                                Zhang et al.: A Sufferage offloading tasks method for multiple edge servers 

Table 1. Metrics used in our paper: 
Metrics Meaning 
𝑁𝑁𝑁𝑁 Number of MDs 
𝑁𝑁𝑁𝑁 Number of mobile servers 
𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛 The total number of tasks in 𝑛𝑛𝑛𝑛th MD 
𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  The 𝑖𝑖th task  from 𝑛𝑛𝑛𝑛th MD 
𝐸𝐸𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  Energy consumption of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝐸𝐸𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖  Execution time of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖  If 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖 = 1, it has been finished, otherwise, it isn’t. 
𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖  The deadline of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖  The arrival time of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  

𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖  and 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖  The size of input files and out files of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖  The number of instructions of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  The execution place of  𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  
𝑙𝑙 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD 
𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙  computing voltage of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD 
𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙  power consumption of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD 
𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙  processing ability of 𝑙𝑙th work state 𝑛𝑛𝑛𝑛th MD 

𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛 A mapping set between 𝑉𝑉𝑛𝑛𝑛𝑛𝑙𝑙 , 𝐸𝐸𝑛𝑛𝑛𝑛𝑙𝑙  and 𝐶𝐶𝑛𝑛𝑛𝑛𝑙𝑙  
𝑁𝑁𝑛𝑛𝑛𝑛 The 𝑛𝑛𝑛𝑛th mobile server 
𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 The number of cores in 𝑛𝑛𝑛𝑛th mobile server 
𝐶𝐶𝐴𝐴𝑛𝑛𝑛𝑛 The processing ability of every core in 𝑛𝑛𝑛𝑛th mobile server 
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 The load of 𝑛𝑛𝑛𝑛th mobile server 
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛  The load of 𝑛𝑛𝑛𝑛th MD 

𝑁𝑁𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The sending rate between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server 

𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The power consumption for sending files from 𝑛𝑛𝑛𝑛 th MD to 𝑛𝑛𝑛𝑛 th mobile 
server 

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The receiving rate between 𝑛𝑛𝑛𝑛th MD and 𝑛𝑛𝑛𝑛th mobile server 

𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) The power consumption for receiving files from 𝑛𝑛𝑛𝑛th MD to 𝑛𝑛𝑛𝑛th mobile 
server 

 
For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 , let function 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ) return whether it has been completed; function 

𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ) is the energy consumption of job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 , so, 
 Maximizing:  

                      𝐷𝐷𝑇𝑇𝑇𝑇1 = ∑𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 )                                              (5) 
𝐷𝐷𝑇𝑇𝑇𝑇2 = ∑(𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛𝑖𝑖 + 𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 ) ∗ 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 )                             (6) 

𝐷𝐷𝑇𝑇𝑇𝑇3 = ∑𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 )                                       (7) 
Minimizing: 

𝐷𝐷𝑇𝑇𝑇𝑇4 = ∑𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ) ∗ 𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 )                                   (8) 
Subject to: 

𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1                                                       (9) 
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1                                                     (10) 

For 𝑒𝑒𝑒𝑒(𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ), the energy consumption on the MD (when it is executed on the MD) and the 
energy for transferring files (when it is offloaded to a mobile server) are two important factors 
for offloading tasks. We do not consider the energy consumption for computation on the 
mobile server. We have four targets in the scheduling: maximizing the number of completed 
jobs (formula (5)), maximizing the size of input files and output files (formula (6)), 
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maximizing the completed instructions (formula (7)) and minimizing the total energy 
consumptions (formula (8)). Formulas (9) and (10) to ensure every MD and every mobile 
server is not overload in the scheduling. 

When 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  is executed on the MD, the execution time 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑖𝑖  and the energy consumption 
𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖  (MD working on 𝑛𝑛𝑒𝑒𝑙𝑙𝑙𝑙th state) are: 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑖𝑖 = �

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
                                       𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 0;

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠                       𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 ≠ 0.

               (11) 

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 = �

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
∗ 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑙𝑙𝑙𝑙                                 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 0;

𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛)           𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 ≠ 0.
    (12) 

In formula (12), suppose that we select the 𝑛𝑛𝑒𝑒𝑙𝑙𝑙𝑙th working stage of the MD. 

4. An offload heuristic to offload tasks from multiple mobile nodes to 
mobile servers 

In this section, first, we give the offload method to the MD, and then we analyze the 
complexity of the proposed method. 

4.1 Scheduling method for the mobile nodes and mobile servers 
As mentioned in formula (12), we get energy consumption when a job is executed on the 

MD (𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ) (Formula (13)) and on the mobile server (𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ) (Formula (14)): 

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
∗ 𝑁𝑁𝐿𝐿𝑛𝑛𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑙𝑙𝑙𝑙                                         (13) 

𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) ∗ 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)                      (14) 

We judge the preferring location by judging 𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑛𝑛
𝑖𝑖  and 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  which has a lower value. 

We also take account of the execution time on the MD (𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛
𝑖𝑖 ) and the mobile server (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 ): 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
                                                    (15) 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛
𝑖𝑖

𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖

𝑃𝑃𝑛𝑛𝑛𝑛
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠                                (16) 

From the above analysis, if 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  is more than 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  prefers to select the 
remote server, otherwise, the job prefers to execute on the mobile node. The problem is 
formulas (14) and (15) have different values when the MDs select different mobile servers 
(different routes have different bandwidth and energy consumption for transferring files). Here 
we give a parameter 𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) to illustrate the bandwidth efficiency: 

𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) = 𝑁𝑁𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛)/𝑁𝑁𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛) + 𝑆𝑆𝐸𝐸(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)/𝑆𝑆𝑆𝑆(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)         (17) 
And another parameter 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖  to illustrate the energy consumption efficiency on the MD 

and the mobile server: 
𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖                                               (18) 

For every MD, we suppose that every MD connects with the mobile server with the highest 
bandwidth efficiency (𝑏𝑏𝑇𝑇𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛)), the saving energy is: 

𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖                                                  (19) 
For every MD (𝑛𝑛𝑛𝑛), we have such targets: 
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Maximizing: 
𝑒𝑒𝑇𝑇1𝑛𝑛𝑛𝑛 = ∑ 𝑛𝑛𝑒𝑒𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  𝑖𝑖                                                (20) 
𝑒𝑒𝑇𝑇2𝑛𝑛𝑛𝑛 = ∑ 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  𝑖𝑖                                                (21) 

Subject to: 
𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ 1                                                         (22) 

Formulas (20) and (21) are the total energy consumption efficiency and the total energy 
saving. For the job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  in the MD (𝑛𝑛𝑛𝑛),  𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  denotes the execution location, if it is, 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  
equals 1, otherwise, it is 0. So, the problem becomes a 0-1 integer programming problem.  

To reduce the complexity of the problem, we first use FCFS policy for the jobs when the 
system load (𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛) of the MD is less than α. We rank every job in every MD according to the 
ascending order of 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 , and schedule the job as FCFS policy until the system is more than 
α. When the system load is more than α, we use the 0-1 integer programming to solve the 
scheduling problem. Algorithm 1 gives the details: 

 
Algorithm 1: Sch-Device() 
1: For each MD (𝑛𝑛𝑛𝑛) 
2:   Rank jobs in every MD according to the descending order of 𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 ; 
3:   While 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 ≤ α 
4:     Schedule the first job and update the system load 𝐿𝐿𝑁𝑁𝑛𝑛𝑛𝑛 of the MD  
5:   Endwhile 
6: EndFor 
7: While (all MD is overload) or (all tasks have been completed) 
8:   For MD 𝑛𝑛𝑛𝑛 in 𝑁𝑁𝑁𝑁 
9:     Solve the scheduling problem in formulas (20) to (22) as a 0-1 programming problem; 
10:     For every job in MD 𝑛𝑛𝑛𝑛 
11:       If 𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖 == 1 
12:         Schedule job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  on the MD; 
13:       EndIf 
14:     EndFor 
15:   EndFor 
16: EndWhile 

 
In algorithm 1, first of all, we rank jobs in every MD according to the descending order of 

𝑒𝑒𝑐𝑐𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 (Line 1, in algorithm 1; same in the following paragraph). Then, we select job one by 
one until the system load is more than α (lines 2~5). Then, we use the 0-1 programming 
method to schedule jobs (line 9). Our targets include formulas (20) and (21). If  𝐽𝐽𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖  equals 1, 
the job will be executed on the MD (line 12); otherwise, we drop and send it to the waiting list 
to be processed on mobile servers. 

After that, all jobs need to be offloaded to a mobile server and the problem is how to select 
which mobile server. Here, we take a suffrage policy: we check every job in the scheduling to 
find the lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 ), and the second-lowest value 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  
(denoted as 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 ): 

 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖                                         (19) 
We select the job with the maximizing 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 , and allocate the job to the related mobile 

server. Algorithm 2 gives the detail. 
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Algorithm 2: Sch-jobs() 
1: 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 = 0; 
2: While the job list is not NULL 
3:   For every job 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖  in the job list 
4:     Get the lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 ) when it is offloaded to the mobile server 𝑒𝑒𝑛𝑛1; 
5:     Get the second lowest value of 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  (denoted as 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 ) when it is offloaded to the mobile 

server 𝑒𝑒𝑛𝑛2; 
6:     𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 −  𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖 ; 
7:     If 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 > 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 
8:       𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡; 
9:       𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 = 𝐽𝐽𝑛𝑛𝑛𝑛𝑖𝑖 ; 
10:       𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛 = 𝑒𝑒𝑛𝑛1; 
11:     EndIf 
12:   EndFor 
13:   Allocate 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 to 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛. 
14:   Update the system load of every mobile server. 
15: EndWhile 

 
In Algorithm 2, 𝑒𝑒𝑇𝑇𝑛𝑛𝑛𝑛𝑠𝑠𝑖𝑖 (Line 1, Algorithm 2; same in the following paragraph) is used to 

record the maximizing Sufferage [42] of Formula (19). Lines 4 and 5 find the lowest 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  
and the second lowest 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , denoted by 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖  and 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 . Line 6 gets the difference 
between 𝑒𝑒𝑒𝑒𝑛𝑛1𝑛𝑛𝑛𝑛𝑖𝑖  and 𝑒𝑒𝑒𝑒𝑛𝑛2𝑛𝑛𝑛𝑛𝑖𝑖 . Lines 7~11 find the job with the lowest 𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 . 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 and 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛 are 
the selected job and the selected mobile server. Line 13~14 allocate the selected job 𝑛𝑛𝑒𝑒𝑙𝑙𝑠𝑠 to 
the selected mobile server 𝑛𝑛𝑒𝑒𝑙𝑙𝑛𝑛, and then update the system load of the selected mobile server. 

4.2 Complexity analysis 
Algorithm 1 has two parts: lines 1-6 and lines 7-16. For the first part, the complexity of lines 

1-6 is O(max (𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)); 𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛 is the total number of tasks in 𝑛𝑛𝑛𝑛th MD. For the second part, 
because the task that can be allocated to a mobile node is a constant (ensuring the system load 
is less than α), the complexity of line 9 is O(1). So, the complexity of the second part is O(1 ∗
𝑁𝑁𝑁𝑁). Thus: 

O(Algorithm 1) =  O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) +  O(𝑁𝑁𝑁𝑁) 
For Algorithm 2, line 4 and line 5 have the same complexity: O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)). Line 3 also 

has a complexity of O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)). So, the complexity of Algorithm 2 is: 
O(Algorithm 1) =  O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) 

In conclusion, the complexity of our algorithm is: 
    O = O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) +  O(𝑁𝑁𝑁𝑁) + O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) 

                                     = O(𝑁𝑁𝑁𝑁) + O(max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛) ∗ max(𝑁𝑁𝐷𝐷𝑛𝑛𝑛𝑛)) 

5. Simulations and comparisons 
5.1 Simulation environment 
The parameters in the simulation environment are given in Table 2. We suppose that the 
system has 20000 jobs, and the number of instructions of each job is a random in [1 100000]MI 
(Million instructions). The file size of the input and output files is in the scope of [0 1000]M. 
Each MD has 4 cores and each has a random computing speed in 1800~2200MHz. The 
working power consumption of the MD is random in 0.4~0.6W and the idle power 
consumption is 0.001W. Each mobile server has 16 cores and each has a random computing 
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speed in 2000~3000 MHz. The sending rate between the MD and mobile server is a random 
number in 6~8M/s and the receiving rate is a random number in 10~20 M/s. The average power 
consumption for receiving data and average power consumption for sending data is 0.05W and 
0.1W. The deadline of jobs is 1.4~1.8 (Random) times of the execution time. All the results 
are the average value of 100 times. The average arrival rate (AAR) (per. hour) is changed from 
400 to 500 with a step of 10. There are 10 MDs and 10 mobile servers in the simulation 
environment. We will evaluate five metrics of the four methods: AET (Average execution 
time), NCJ (Number of completed jobs), AEC (Average energy consumption), NOI (number 
of instructions of completed tasks) and FS (files size of completed jobs). According to the 
parameters used in Table 1, the five metrics are given as follows: 

𝑁𝑁𝐿𝐿𝐽𝐽 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖   
𝐴𝐴𝐸𝐸𝐷𝐷 = ∑ ∑ 𝐸𝐸𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽  
𝐴𝐴𝐸𝐸𝐿𝐿 = ∑ ∑ 𝐸𝐸𝐿𝐿𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽  

𝑁𝑁𝑂𝑂𝐼𝐼 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 ∗ 𝑁𝑁𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖 / 𝑁𝑁𝐿𝐿𝐽𝐽  
𝐹𝐹𝑁𝑁 = ∑ ∑ 𝐹𝐹𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖 ∗ (𝑂𝑂𝑂𝑂𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖 + 𝐼𝐼𝑁𝑁𝑛𝑛𝑛𝑛

𝑖𝑖 )/ 𝑁𝑁𝐿𝐿𝐽𝐽 
 

Table 2. Parameters used in the simulation 
Parameters Values 
Working frequency of the MD (4 cores)  1800~2200MHz 
Working frequency of mobile server (16 cores) 2000~3000MHz 
Working power consumption of the MD 0.4~0.6W 
Idle power consumption of the MD 0.001W 
Average power consumption for receiving data (100M/s) 0.05W 
Average power consumption for sending data (10M/s)  0.1W 
Receiving data rate (from MD to mobile server) 50~150M/s 
Seeding data rate (from MD to mobile server) 20~80M/s 

 
5.2 Comparisons and discussions 
We will compare our method with Tradeoff (TDO) [43]–[45], adaptive offloading (AO) [16] 
and Dynamic Programming-based Energy Saving Offloading (DPESO) algorithm [46]. 
DPESO gave the offloading method by considering the offloading option, offloading sequence 
and transmission power by judging the location where the job saves more energy. The TDO is 
an intelligent computation offloading system that makes tradeoff decisions for code offloading 
from the MD to the cloud to reduce energy consumption. AOD uses a fitness function to 
evaluate the offloading scheme. We will compare those four methods in the following metrics: 
number of un-completed jobs (NUJ) (Fig. 3), average energy consumption (AEC) (Fig. 4), 
average execution time (AET) (Fig. 5), number of instructions of completed tasks (NOI) (Fig. 
6) and files size of completed tasks (FS) (Fig. 7). We call our method as “Sufferage” in the 
simulation which includes Algorithm 1 and Algorithm 2. 

Fig. 3 is the AET of DPESP, AO, and TDO. Sufferage always has the lowest value in AET 
under any AARs. The AET of Sufferage, DPESP, AO, and TDO is 6.3528 (s), 6.8672 (s), 
7.4151 (s), and 7.6302 (s), respectively. Fig. 4 is the AEC of those methods when AARs are 
changed from 400 to 500 with a step of 10. The ascending order of AECs of those four methods 
is Sufferage, DPESP, AO, and TDO. To AECs of DPESP, AO, and TDO, Sufferage average 
reduces 0.3314, 0.2479, and 0.6191, about 10.39%, 8.43%, and 24.09%. Sufferage performs 
best in AEC and AET because the scheduling algorithm in the MD ensures the lowest cost and 
the scheduling algorithm in the mobile server considers the future influence on the scheduling 
order. When Sufferage offloads tasks, it makes that the task has a lower execution time and 
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energy consumption when the task is executed on the MD. Moreover, when the task is 
offloaded to the mobile server, it considers the influence of scheduling tasks.  Other methods 
just consider the scheduling result and give a static judgment (such as tradeoff, fit function, 
and others) for the scheduling. Therefore, sometime, the scheduling of some tasks makes the 
coming tasks do not have a lower energy consumption in the future. 

 
 

 
 

Fig. 3. AET under different AARs 
 

 
 

Fig. 4. AEC under different AEC 
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Fig. 5. NUJ under different AARs 

 
Fig. 6. NOI under different AAR 

 
Fig. 7. SF under different AAR 
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Fig. 5 is the NUJ of those four methods under different AARs. Sufferage always has the 
lowest value in NUJs, followed by DPESP, AO, and TDO. To the NUJ of DPESP, AO and 
TDO, Sufferage average reduces 206.6804, 413.2690, and 1072.8, about 14.40%, 25.17% and 
46.61%. Fig. 6 and Fig. 7 are the NOI and FS of all methods. In general, the four methods in 
Fig. 6 and Fig. 7 have the same trend with NUJ in Fig. 6. Compared to NOI of DPESP, AO 
and TDO, Sufferage average reduces (in billion MI) 2.4794, 2.5434 and 0.2954, respectively. 
Compared to SF of DPESP (Fig. 7), AO and TDO, Sufferage average reduces (in ten thousand 
M) by 7.5965, 4.1228e and 1.5004, respectively. Generally speaking, all those methods have 
an increasing trend in NUJ (Fig. 3), AET (Fig. 5) and AEC (Fig. 4), and have a decreasing 
trend in NOI (Fig. 6) and FS (Fig. 7) with the enhancement of AARs. With the enhancement 
of AARs, the system has a higher system load, more tasks cannot be completed before their 
deadlines, thus enhancing NUJ and decreasing FS and NOI. It also makes the system have a 
larger value in AET and ACE. Sufferage makes full of use local and the mobile server 
resources, thus having a minimum value in NUJ. At the same time, when the total number of 
tasks is a constant, Sufferage may have the highest value in NI and FS.  

6. Conclusion and future work 
In this paper, we focus on the offloading problem when there are multiple MDs and multiple 
mobile servers. Based on the analysis, first, we select the tasks executed on the MD according 
to the ration between the energy consumption on the MD and the remote cloud; for the task 
executed on the cloud, we propose a suffrage heuristic to offload tasks and select the mobile 
server. Simulation results show that our proposed method improves the number of completed 
jobs, and reduce energy consumption. We know that the mobile node may have the ability to 
harvest energy, so how to use the energy and reduce the energy consumption from other system 
is the two key problems. We may pay some attention to the new environment and give 
offloading method. As to the future work, we may use Image Retagging technology [47], [48] 
to manage the network of the MD for task offloading. 
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